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Figure 1: Boundary envelopes of four levels of detail of the super phoenix dataset (12,936 tetrahedral elements). The simplified mesh in 
the final image has only 46.58% of the original number of volume elements. CPU user time for simplification was less than one minute as 
measured on an SGITM O2+ MIPS R12000 400 MHz.  

Abstract 
We introduce an algorithm for fast topology-sensitive decimation 
of volume meshes. The algorithm employs a planar quadric error 
metric to guarantee minimum geometric error at every 
simplification step, while maintaining the input mesh's geometric 
consistency, and restraining changes to its topological genus, at 
low computational costs. The proposed method presents a new 
alternative to existing volume mesh decimation schemes, and lies 
between computationally intensive edge-collapse-based 
algorithms [1, 2, 3, 4], and a rapid topology-insensitive volume 
decimation approach [5]. The applications include, but are not 
limited to, rapid Level of Detail (LOD) generation, progressive 
volume rendering for scientific visualization applications, and 
representing volume meshes with minimal geometric complexity 
in computer games and entertainment media. 
 
CR Categories: I.3.5 [Computer Graphics]: Computational 
Geometry and Object Modeling – surfaces and object 
representations. 
 

Keywords: volume mesh simplification, multi-resolution, level-
of-detail, unstructured meshes. 

1.  INTRODUCTION 
Scientists and engineers frequently deal with complex volumetric 
models that are difficult to store, transfer, or render with available 
computing resources. Such models typically have an associated 
attribute domain space spanning over multiple dimensions 
(possibly time-varying scalar, vector, or tensor attributes, or even 
geometry) that adds to the complexity [6, 22, 8].  
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In the recent past, this challenge has motivated computer scientists 
to explore algorithms that reduce the geometric complexity of 
such volume models. Almost all of the proposed methods either 
assume a tetrahedral mesh, or break down a tessellated volume 
into tetrahedra. Tetrahedra are preferred for discrete volume 
representation because of their simplicity, and because of their 
convex shape, which makes them suitable as volume rendering 
primitives. Most of these decimation algorithms evolved from 
efficient polygon-mesh simplification algorithms [9, 10, 11, 12, 
13, 14, 15, 16, 17], and provide solutions for topology related 
inconsistencies that may occur during/after volume mesh 
simplification.  
      
Recently, a rapid volume mesh decimation algorithm, TetFusion, 
was proposed [5]. This algorithm defines a tetrahedron as the 
most basic geometric primitive for collapse. However, it does not 
handle topological changes that might affect a mesh during 
simplification, and is limited to only interior tetrahedra of a 
volume (the boundary elements are not decimated at all). We 
propose a volume mesh simplification algorithm that employs a 
planar quadric error metric to guarantee minimum geometric and 
attribute error upon each collapse. We show how a simple 
geometry decimation operation, along with an efficient geometric 
error metric, can take care of complex mesh inconsistency 
problems with minimal additional computational complexity. Our 
new algorithm ensures that a mesh stays within (and 
infinitesimally close to) its boundary envelope at all levels of 
resolution during simplification. The major contribution of this 
paper is a locally greedy progressive simplification algorithm for 
volume meshes, that 
 

-  is driven by a rapid space redistribution strategy, 
-  handles cases of mesh-inconsistency, while preserving the 

boundary envelope of the mesh, and 
-  employs a planar quadric error metric to guarantee 

minimum error in the geometric domain when collapsing 
the tetrahedral elements.  



 

 
 

 
 

 
Figure 2: Boundary envelopes of four levels of detail of a synthetic box dataset (3072 tetrahedral elements originally). The original mesh 
was simplified by 64.48% in less than 10 seconds (on an SGITM O2+ MIPS R12000 400 MHz), with perfect boundary feature preservation. 
The color represents the scalar attribute associated with the mesh vertices; the primitives are rendered using smooth shading. 
 
Section 2 describes related work in the general area of mesh 
simplification. It describes the challenges that arise when 
simplifying volume meshes, and the existing approaches used to 
address them. Section 3 describes our new algorithm: QTetFusion, 
which combines boundary and feature preservation in a single, 
computationally efficient algorithm. Section 4 presents the results 
of experimental runs of the algorithm on selected datasets. Section 
4 concludes the paper with a discussion of merits and drawbacks 
of this new approach. 

 
2.  RELATED WORK 
 
There have been a number of publications in the area of mesh 
simplification in recent years, targeting a reduction of the 
geometric complexity of both surface and volume meshes. Both 
refinement- and decimation-based strategies have been explored 
in this pursuit. We first briefly discuss important works in the area 
of polygonal mesh reduction, because they have historically 
influenced almost all of the existing volume mesh simplification 
algorithms (section 2.1). We then discuss existing volume 
decimation algorithms in section 2.2. 
 

2.1 Surface Mesh Simplification 
               
This section describes selected algorithms that simplify polygonal 
(surface) meshes. Most of the related work surveyed in this 
category is based on geometry reduction techniques (as opposed 
to refinement-based techniques), which iteratively decimate one 
or more primitives in a local or global error-metric guided 
fashion. Some of the methods then consolidate the mesh using the 
remaining (smaller) number of primitives. Some of the noted 
works in this area, that affected the efforts in volume mesh 
simplification also, are: Schroeder et al. [21] [22], Hoppe [13], 
Turk [27], and Garland and Heckbert [10] etc. For further 
literature, the authors suggest a reference to the survey report on 
multi-resolution modeling by Garland [9] for a detailed analysis 
of numerous relevant publications. 

 
2.2 Volume Mesh Decimation            
 
Only a few attempts have been made to address volume mesh 
simplification. We focus specifically on tetrahedral mesh 
decimation because of the common use of tetrahedra in 
representing unstructured volumetric models in the scientific 
community.  

Trotts et al. [3] were amongst the first to implement a tetrahedral 
mesh decimation algorithm. They extend polygonal geometry 
reduction techniques to tetrahedral meshes, and present a 
tetrahedral collapse operation as a sequence of three edge 
collapses, while keeping the overall geometric error within a 
tolerance range. The error-metric used is based on a unique 
spline-segment representation of each tetrahedron.  The paper 
discusses several problems and difficulties specific to tetrahedral 
mesh simplification. Further, because the decimation strategy is 
based upon successive ‘edge collapses’, the algorithm suffers 
from overwhelming overheads for the data structures to store edge 
information for massive volumetric datasets. The paper does not 
mention the high time complexity of the algorithm [3]. 
 
Staadt and Gross [2], in their work on progressive 
tetrahedralization, pursue a specialized class of simplicial 
complexes [13]: tetrahedra. The algorithm proposed is thus a 
conceptual extension of ‘edge collapse’ employed for progressive 
simplification of surface meshes [11]. The algorithm points out 
and provides solutions for previously undiscussed cases of 
‘negative tetrahedra’ (flipping), self-intersections, and 
intersections at boundary regions. However, the dynamic mesh-
consistency tests that are proposed as solutions are 
computationally expensive. As an example, the algorithm 
reportedly took about five hours to simplify a 576,576 tetrahedral 
elements mesh [2].  
 
Trotts et al. [4], in an extension to their earlier work [3], 
incorporate a scalar-attribute preservation metric. The new 
algorithm ties the approximation error to the deviation of a 
simplified scalar field from the original values. They simplify the 
complex energy terms used for error evaluation in other methods. 
Noting the topological problems and degeneration cases that occur 
when using a sequence of three edge collapses (which require 
computationally expensive solutions), they revert back to a single 
edge collapse. Citing the results section from this publication, 
their best performing algorithm took 2,557 minutes (about 42 
hours) to simplify a 449,890-element blunt fin dataset by 83.9%. 
The computational overhead introduced by these methods added 
to our motivation to explore alternative methods for simplification 
of volume meshes that are computationally less expensive.  
 
Measuring domain error and accordingly calibrating 
simplification strategies for an accurate approximation is an 
important issue, which had been under-rated in volume mesh 
decimation research, until Cignoni et al. [1] presented a 
framework for integrated error evaluation for both domain and 



 

 
 

field approximations during simplification. They stress on 
accurate estimation of domain errors while employing ‘edge-
collapse’-based decimation strategies. The paper elaborately 
explores local accumulation, gradient difference, and brute force 
strategies to evaluate and predict domain errors while 
incrementally simplifying a mesh.  
 
When addressing mesh approximation, topology preservation is 
another important concern for volumetric models (e.g., volume 
rendering applications in the engineering or scientific domain). In 
his recent work, Edelsbrunner [19] provides an extensive 
algorithmic background for ensuring topological correctness 
during edge-collapse based mesh simplification. Dey et al. [20]  
provide detailed criteria for topological correctness, which can be 
generalized to polyhedral meshes.  
 
We are presenting a computationally efficient (tetrahedral) 
volume mesh simplification method that combines metrics for 
accurate data representation with techniques for restraining 
volumetric topology changes in a rapid tetrahedral mesh 
decimation algorithm. 
      
 

 
(a) Before collapse               (b) After collapse 

Figure 3: An illustration of an instance of the QTetFuse 
operation. The upper-left red (prey) tetrahedron is the one to 
collapse onto its fusion point. The green tetrahedron degenerates 
into a line, which is removed consequently (deleted tetrahedron). 
The lower black (affected) tetrahedron stretches in the direction of 
the corresponding fusion point. Note that for the affected 
tetrahedron, the vertex it shares with the prey tetrahedron tends to 
move ‘away’ from the base plane formed by its other three 
vertices (flipping discouraged). If the shown prey tetrahedron is 
an interior one, at least eleven tetrahedra collapse as a result of its 
collapse (see section 3.2 a). 

 
3. QUADRICS GUIDED FUSION 
 
As discussed in the previous section, almost all of the existing 
work addressing volume mesh simplification evolved from ‘edge-
collapse’-based decimation strategies that were originally 
proposed for polygonal meshes. However, surface mesh 
simplification algorithms cannot simply scale up to handle higher 
order simplicial complexes because of additional geometric and 
topological constraints. Cases like degenerate simplices, violation 
of Delaunay tessellation, loss of topological type (undesired 
closing of holes or creation of new ones), intersection of volume 

elements at boundary regions, etc., should be specially taken care 
of during volume mesh simplification. Such cases have already 
been identified and can be avoided with special computational 
methods [20, 19].  However, algorithms that present 
computationally less intensive simplification schemes either do 
not handle all of these cases, or are spatially selective during 
decimation and hence cannot provide very high reduction ratios 
[5].  
 
To overcome these shortcomings, we present QTetFuse as a 
reversible atomic decimation operation for tetrahedral meshes. 
The basic idea is to fuse the four vertices of a tetrahedron into a 
point (the fusion point, see the definitions in section 3.1). The 
fusion point is computed so that minimum geometric error is 
introduced during decimation. We employ a planar quadric error 
metric to measure and bound this error (described in section 3.3, 
see Figure 2 for an illustration).  
 

3.1 Definitions 
 
In this section, we introduce notations that are specific to the 
domain of this paper: 
 
3.1 Prey Tetrahedron: A tetrahedron that is selected 

for decimation.  
 
3.2 Boundary Tetrahedron: A tetrahedron with one or more 

of its vertices lying on the boundary surface. All of the 
tetrahedra that are non-boundary shall be called interior 
tetrahedra hereafter in this paper. 

 
3.3 Boundary Face: Triangle face of a boundary tetrahedron all 

three of whose vertices lie on the boundary surface. 
 
3.4 Fusion Point:  Point of collapse of the four vertices of a prey 

tetrahedron. One prey tetrahedron may have more than one 
valid fusion point depending upon the specified planar 
quadric error tolerance value.  

 
3.5  Affected Tetrahedron: A tetrahedron that shares exactly one 

vertex with a prey tetrahedron. This shared vertex stretches 
the affected tetrahedron towards, and onto the fusion point of 
the prey tetrahedron as a result of TetFusion.  

 
3.6 Prey Vertex: The vertex of an affected tetrahedron that it 

shares with a prey tetrahedron.  
 
3.7  Base triangle: A triangle formed by the vertices of an 

affected tetrahedron, excluding the prey vertex.   
 
3.8 Deleted Tetrahedron: A tetrahedron that shares two or more 

vertices with a prey tetrahedron, which collapses as a result 
of the collapse of the prey tetrahedron. 

 
Much of these definitions have been borrowed from the author’s 
previous work TetFusion [5] for a clarity and conceptual 
extension. 
 
3.2 Properties  
 

This section discusses the inherent properties of QTetFusion 
(Quadrics guided Tetrahedron Fusion) as a volume mesh 
decimation algorithm for tetrahedral meshes: 
 



 

 
 

(a) High decimation: Each instance of QTetFuse operation 
decimates at least 11 tetrahedral elements for an interior or 
non-boundary prey tetrahedron. This number includes the 
prey tetrahedron, exactly 4 tetrahedra each sharing one of the 
four faces of the prey tetrahedron, and at least 6 more 
tetrahedra each one of which shares exactly one of the six 
edges with the prey tetrahedron. This generally means a 
‘higher’ lower bound on the decimation ratio per step than an 
edge collapse operation. Using a tetrahedral collapse as a 
primitive operation avoids some of the topological problems 
and degeneration cases mentioned by Trotts et al. [4]. 

 
(b) No flipping: Upon each decimation step, one or more of the 

affected tetrahedra may suffer a ‘flipping’ or negation of the 
volume it represents. This can happen only when the vertex it 
shares with the corresponding prey tetrahedron (the shared 
vertex) flips sides with respect to its base plane (the plane 
formed by the other three vertices of the affected tetrahedron). 
To avoid such cases, an early rejection test is employed.  

 
(c) Simplified mesh restricted to the inside (and 

infinitesimally close to) the boundary envelope of the source 
mesh: In the case of QTetFusion, self-intersections of 
boundary elements might occur when an affected tetrahedron 
pierces through one or more of the boundary faces of a 
boundary tetrahedron. We prevent such cases by restricting 
the simplified mesh to remain inside its boundary envelope, 
and by prohibiting flipping. 

 
(d) Sensitivity towards topological genus of the mesh: Since the 

boundary envelope of a polyhedral mesh represents its 
topological genus; if the topological genus of the envelope is 
preserved, topology preservation for the enclosed volume 
mesh is guaranteed. Following from features (b) and (c) 
above, the algorithm guarantees that the simplified mesh 
remains confined (on)to its boundary envelope. This restrains 
the closure of any existing holes, as well as opening of any 
new ones. The latter is an inherent property of any edge-
collapse based decimation operation however. 

 

3.3 Planar Quadric Error Metric (PQEM)  
 
This section describes the error metric we employ to bound the 
domain errors during simplification. Garland and Heckbert [9] 
developed a computationally efficient and intuitive algorithm 
employing a Quadric Error Metric (QEM) for rapid progressive 
simplification of polygonal meshes.  The algorithm produces high 
quality approximations and can even handle 2-manifold surface 
meshes. We present a Planar Quadric Error Metric (PQEM) based 
on the QEM for decimation of a volume element (see figure 3). 
To obtain an error minimizing sequence of QTetFuse operations, 
we first need to associate a ‘cost’ of collapse with each 
tetrahedron in the mesh. As described in [9], we first associate a 
quadric error measure (a 4x4 symmetric matrix Q) with every 
vertex v of a tetrahedron that indicates the error that would be 
introduced if the tetrahedron were to collapse.  For each vertex v 
of a tetrahedron, the measure of its squared distance with respect 
to all incident triangle faces (planes) is given by: 
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where p = [px py pz d]T represents the equation of a plane incident 
on v such that the weight ap represents the area of the triangle 
defining p.   Further, if n represents the normal vector of p, then d 
is given by  
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Equation (1) can be rewritten as a quadric:  
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where Qp is the area-weighted error quadric for v corresponding to 
the incident plane p.  
 
Once we have error quadrics Qp(i) for all the four vertices of the 
tetrahedron T in consideration, we simply add them to obtain a 
single PQEM as follows:      
 

∑
=

=
4

1

)()(
i

P iQTPQEM         (4) 

 
Now if T were to collapse to a point vc, the total geometric error 
(for T) as approximated by this metric would be: 
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Chart 1: A chart depicting the CPU user time (seconds, vertical 
axis) based on the number of QTetFuse operations performed 
(horizontal axis) for the selected datasets. 
 

3.4 Computing the Fusion Point  
 
Consider a tetrahedron T = {v1, v2, v3, v4}. We compute a point of 
collapse (fusion point v ) for T that minimizes the total associated 
PQEM as defined in equation (5). According to [9], this can be 
done by taking the partial derivatives of )(T∆ , and solving them 

for 0. The result is of the form 
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Note that the terms qij are coefficients of the respective PQEM. 
There might be cases when the quadric matrix used in the 
equation is not invertible. In that case, we settle on the barycenter 
of T as the fusion point.  

 

 
      (a) Polygonal mesh                     (b) Polyhedral mesh 
Figure 5: Error ellipsoids for affected vertices when the primitive 
to be decimated is (a) an edge and (b) a tetrahedron. Note that the 
yellow ellipsoid in b represents a level-set surface for the Planar 
Quadric Error for the prey tetrahedron shown. This quadric error 
is the sum of quadric errors for the four constituent vertices of the 
tetrahedron. 
 

3.5 The Algorithm 
 
This section describes our locally greedy algorithm: QTetFusion. 
The method features a preprocessing phase that evaluates PQEMs 
for all the tetrahedra in the input mesh M, and stores them in a 
heap data structure. We employ a Fibonacci heap (because of its 
better amortized time complexity compared to a simple binomial 
heap) to maintain the priority queue of tetrahedral elements keyed 
on their PQEMs [21]. The main algorithm is outlined below: 
  
 while heap is not empty 
  extract T with minimum )(T∆  from the heap  

  if none of adjacentTetrahedra(T ) would flip as a  
  result of T’s collapse,  
                      QTetFuse (T) 
       update heap 
 
Note that the pseudo procedure adjacentTetrahedra(T) returns a 
list of all the tetrahedra adjacent to T. 

 

4.  RESULTS AND CONCLUSION 
 
Table-1 and chart-1 summarize the results obtained from 
experimental runs of QTetFusion on selected datasets. The CPU 
usage results verify the hypothesis that QTetFusion lies between 
computationally intensive volume mesh simplification algorithms 
[1, 2, 3, 4], and its closest predecessor TetFusion [5]. For example 
in a comparative experiment for a reduction of 49.3% of the 
187,395 elements blunt fin dataset, TetFusion took 15.480 
seconds (SGI R10K 4x194 MHZ); while QTetFusion took 
715.074 seconds (SGI R12K 450 MHZ) of CPU user time. 
However, QTetFusion presents three important advantages over 
TetFusion although bearing a slight additional computational 
complexity: 

- Sensitivity towards changes in topological genus of the 
input mesh, 

- reduction of boundary elements (previously not handled 
by TetFusion), and 

- use of planar quadric error metric to ensure minimum 
local geometric error per decimation step (optimal 
fusion point instead of the volume element’s 
barycenter).  

- is feature sensitive (preserves boundary features like 
creases, sharp edges etc. by the use of weighted planar 
quadric error metrics), 

- is more ‘intuitive’ for volumetric meshes than ‘edge–
collapse’-based methods. 

  
Future work: The authors aim at the following goals towards a 
wider applicability of the algorithm in the future: 

- development of error metrics for guided decimation of 
volume meshes with time-varying geometry and domain 
attributes, and 

- incorporating offline geometry compression [22, 23, 24, 
25, 26] with QTetFusion to develop a dynamic (on the 
fly) LOD management system for volume meshes as the 
one for polygonal meshes in [27].    
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# mesh n R/R(%) initHeap (s) QTetFusion (s) 
 

1. super phoenix 12,936 53.648 17.031 31.174 
2. blunt fin 187,395 49.294 295.071 715.074 
3. comb chamber 215,040 47.201 332.818 976.603 
4. oxygen post 513,375 46.462 810.119 2803.575 

Table 1(a). Reduction ratios (R/R) and CPU user execution 
times (seconds) for heap initialization and actual QTetFusion. 
 
                       

# mesh n ndecim # QTetFuse Avg. ndecim 
 

1. super phoenix 12,936 6,940 501 13.852 
2. blunt fin 187,395 92,375 6,081 15.684 
3. comb chamber 215,040 101,502 6,588 15.407 
4. oxygen post 513,375 238,527 14,830 16.084 

Table 1(b). Number of QTetFuse operations and the number of  
tetrahedra decimated as a result (ndecim).  
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